Improving inclusive design by understanding the biomechanical and psychological performance of older adults.

Prof AC Nicol, Dr BA Conway, Miss V Hood
Bioengineering Unit, University of Strathclyde

Dr MA Grealy, Miss L Potter
Department of Psychology, University of Strathclyde

Prof AS Macdonald, Mr D Loudon
Product Design Engineering, Glasgow School of Art

Dr P Rowe, Mr D Samuel
Department of Physiotherapy, Queen Margaret University College
Is it fair to exclude people?
Inclusive Design

- a design approach to prevent *unintentionally* excluding those with impaired capabilities from using products through *lack of consideration* of their needs and wants.
Current situation for designer
Alternative situation
Inputs to software tool

- Physical abilities
- Biomechanical performance
- Psychological attributes

Software tool
Lab testing – University of Strathclyde

- 84 healthy older adults
- 3 age groups: 60+ (15♀ 15♂), 70+ (15♀ 15♂), 80+ (11♀ 13♂)
- 900 hours of lab testing
Inputs to software tool

- Physical abilities
- Psychological attributes
- Biomechanical performance
Physical Assessment

• Hip and knee strength in three positions

• Grip strength

• Range of motion of upper and lower limb joints
Inputs to software tool

- Biomechanical performance
- Physical abilities
- Psychological attributes
Biomechanical Assessment

- Full body biomechanics
 - Stairs
 - Chair
 - Door
 - Lifting
 - Walking

- Hand biomechanics
 - Remote control
 - Turning key
 - Opening jar
Inputs to software tool

- Physical abilities
- Biomechanical performance
- Psychological attributes
Psychological input

Problems for designers:

• Capability beliefs of older adults

• Ability of older adults to deal with novel objects and procedures
Capability beliefs

Do older adults acknowledge changing abilities?

- Over-estimation: risks physical injury
- Under-estimation: loss of independence spirals
Capability beliefs questionnaire

- Physical flexibility
- Physical endurance
- Walking ability
- Manual ability
- Co-ordinate precise movements
- Motor ability in demanding contexts
- Motor ability in novel contexts
- Confidence in motor ability in face of aging
- Motor ability relative to same-age peers
- Over-cautious and over-confident indicator
Levels of capability beliefs

Confidence level (%)

Older age-group

- confidence with aging
- relative to peers
- novel contexts
- walking
- manual
Levels of Capability Beliefs

Over-confident:
- 56% of 60’s
- 61% of 70’s
- 32% of 80’s

Over-cautious:
- 30% of 60’s
- 7% of 70’s
- 49% of 80’s
Over-riding the ‘old way of doing things’

Failed to over-ride:

- 52% of 60’s
- 67% of 70’s
- 81% of 80’s

Learned with practice:

- 80% of 60’s
- 17% of 70’s
- 22% of 80’s

Higher levels of confidence:

- Better performance among less able older adults
- Poorer performance among more able older adults
Over-riding inappropriate action

More ‘failures to over-ride’
• In 60’s compared to 20’s only
• In 70’s and 80’s compared to all younger age-groups

Even when succeeded to over-ride:
• Still errors in controlling ongoing action
• Emerged from as young as 40’s
• Became more frequent and extreme with older age
Over-riding inappropriate action

For each older age-group:

• Different types of capability beliefs related to
 – Type of motor errors produced
 – Increases in error frequencies
Inputs to software tool

- Physical abilities
- Biomechanical performance
- Psychological attributes
<table>
<thead>
<tr>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>J</th>
<th>K</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>0.0083</td>
<td>-629.256</td>
<td>-203.563</td>
<td>847.2938</td>
<td>-627.786</td>
<td>-27.9368</td>
<td>846.9444</td>
<td>-755.041</td>
<td>-150.637</td>
<td>454.7546</td>
<td>-492.817</td>
</tr>
<tr>
<td>3</td>
<td>0.0167</td>
<td>-621.496</td>
<td>-203.381</td>
<td>845.4076</td>
<td>-619.339</td>
<td>-27.2996</td>
<td>844.9385</td>
<td>-749.782</td>
<td>-149.512</td>
<td>454.4905</td>
<td>-484.301</td>
</tr>
<tr>
<td>4</td>
<td>0.025</td>
<td>-613.46</td>
<td>-203.123</td>
<td>843.676</td>
<td>-610.763</td>
<td>-26.68</td>
<td>843.0613</td>
<td>-744.194</td>
<td>-148.59</td>
<td>454.1714</td>
<td>-475.596</td>
</tr>
<tr>
<td>5</td>
<td>0.0333</td>
<td>-605.154</td>
<td>-202.789</td>
<td>842.1017</td>
<td>-602.059</td>
<td>-26.0762</td>
<td>841.3209</td>
<td>-738.262</td>
<td>-147.838</td>
<td>453.8021</td>
<td>-466.727</td>
</tr>
<tr>
<td>6</td>
<td>0.0417</td>
<td>-596.591</td>
<td>-202.38</td>
<td>840.6908</td>
<td>-593.231</td>
<td>-25.4832</td>
<td>839.7327</td>
<td>-731.959</td>
<td>-147.207</td>
<td>453.3945</td>
<td>-457.734</td>
</tr>
<tr>
<td>7</td>
<td>0.05</td>
<td>-587.786</td>
<td>-201.895</td>
<td>839.4527</td>
<td>-584.279</td>
<td>-24.8952</td>
<td>838.3197</td>
<td>-725.244</td>
<td>-146.646</td>
<td>452.9628</td>
<td>-448.663</td>
</tr>
<tr>
<td>8</td>
<td>0.0583</td>
<td>-578.763</td>
<td>-201.333</td>
<td>838.4003</td>
<td>-575.207</td>
<td>-24.3063</td>
<td>837.11</td>
<td>-718.07</td>
<td>-146.125</td>
<td>452.5127</td>
<td>-439.558</td>
</tr>
<tr>
<td>9</td>
<td>0.0667</td>
<td>-569.551</td>
<td>-200.698</td>
<td>837.548</td>
<td>-566.022</td>
<td>-23.7105</td>
<td>836.1332</td>
<td>-710.386</td>
<td>-145.66</td>
<td>452.0329</td>
<td>-430.454</td>
</tr>
<tr>
<td>10</td>
<td>0.075</td>
<td>-560.189</td>
<td>-199.992</td>
<td>836.9102</td>
<td>-556.737</td>
<td>-23.1011</td>
<td>835.4149</td>
<td>-702.138</td>
<td>-145.305</td>
<td>451.4936</td>
<td>-421.38</td>
</tr>
<tr>
<td>11</td>
<td>0.0833</td>
<td>-550.718</td>
<td>-199.223</td>
<td>836.498</td>
<td>-547.368</td>
<td>-22.471</td>
<td>834.9731</td>
<td>-693.276</td>
<td>-145.15</td>
<td>450.6517</td>
<td>-412.361</td>
</tr>
<tr>
<td>12</td>
<td>0.0917</td>
<td>-541.182</td>
<td>-198.397</td>
<td>836.3167</td>
<td>-537.939</td>
<td>-21.8122</td>
<td>834.8154</td>
<td>-683.755</td>
<td>-145.293</td>
<td>450.0573</td>
<td>-403.428</td>
</tr>
<tr>
<td>13</td>
<td>0.1</td>
<td>-531.627</td>
<td>-197.522</td>
<td>836.364</td>
<td>-528.476</td>
<td>-21.1165</td>
<td>834.9366</td>
<td>-673.529</td>
<td>-145.823</td>
<td>449.0623</td>
<td>-394.618</td>
</tr>
<tr>
<td>15</td>
<td>0.1167</td>
<td>-512.614</td>
<td>-195.656</td>
<td>837.0934</td>
<td>-509.564</td>
<td>-19.5919</td>
<td>835.9326</td>
<td>-650.769</td>
<td>-148.175</td>
<td>446.3324</td>
<td>-377.581</td>
</tr>
<tr>
<td>16</td>
<td>0.125</td>
<td>-503.225</td>
<td>-194.682</td>
<td>837.7328</td>
<td>-500.149</td>
<td>-18.7611</td>
<td>836.7391</td>
<td>-638.118</td>
<td>-149.91</td>
<td>444.5758</td>
<td>-369.479</td>
</tr>
</tbody>
</table>
Key points

• Information which designers cannot find out on their own
 – Only externally visible through the effects on movement

• Data (+ specialist knowledge) must be translated into a meaningful form for design
New model
What happens in real movements?
What happens in real movements?
Interaction with design software
Interaction with design software
What if?
Next steps

• Integrate psychological findings
• Expand richness of information
• Add design guidelines and strategies
• Investigation of ways to enable the designer to empathise with the situation of the user
Questions