Temperature and velocity interactions in neuromuscular function during locomotion in older people

Richard Ferguson & Martin Bell

Strathclyde Institute of Pharmacy and Biomedical Sciences
Introduction

Locomotion and functional ability are important for quality of life

Power and efficiency are important determinants of locomotion

‘Explosive’ power is well investigated

Little is known about ‘sustained’ power i.e. mechanical efficiency
Physiological background

Mechanical efficiency = power output / energy expenditure

Influenced by speed of contraction and temperature

Speed of contraction:
- slower muscle contractile properties
- structural and functional factors

Muscle temperature:
- lower muscle temperature
- physiological and social factors

Objectives

To investigate how contraction speed and muscle temperature influences the efficiency of locomotion in the older population.

To investigate the neuromuscular mechanisms that underpin the efficiency of locomotion in the older population.
 - muscle fibre composition
 - muscle recruitment patterns
Methods

Participants
 Young: females between 18 and 35 years (n=14)
 Older: females between 75 and 85 years (n=14)

Protocol
 Cycling exercise at 4 contraction frequencies (30, 45, 60 and 90 rpm) and 3 muscle temperatures (~32°C, ~35°C and ~38°C)

Measurements
 Mechanical efficiency (pulmonary gas exchange)
 Neuromuscular activity (surface electromyography)
 Muscle fibre composition (needle biopsy of vastus lateralis)
Future Work

Functional –

BWU experiments: faster walking speed for same energy cost (training studies)

medical devices: maintaining optimal muscle temperature

Mechanistic –

cellular muscle function – Ca$^{2+}$, Na$^{+}$-K$^{+}$ handling

muscle-vascular interface

(utilise the human muscle sampling procedure)