NEW APPROACHES TO DIAGNOSTICS
The Impact of Biomarkers in Alzheimer’s Disease

Dr. Ian Pike
Business Development Director

TVLSN Meeting
29th November 2006
Scope of the talk

- Biomarkers for Alzheimer’s disease
- Current methods of diagnosis
- Application of ProteoSHOP™ technologies to biomarker discovery
- Mass spectrometry of tau phosphorylation
- Future perspectives of multi-analyte diagnostics
What is a biomarker?

- **Biomarker**
 “a characteristic that is objectively measured and evaluated as an indicator of normal biological processes, pathogenic processes, or pharmacological responses to a therapeutic intervention”

- **Clinical endpoint**
 “a characteristic or variable that reflects how the patient feels, functions or survives.”

- **Surrogate endpoint**
 “sub-set of biomarkers intended to substitute for clinical endpoints”

Ideal biomarkers of AD

- Detectable before clinical symptoms
- Sensitivity & Specificity >80% in neuropathologically confirmed cases
- Reliable, reproducible & inexpensive
- Non-invasive & simple to perform
- Confirmed by at least two independent studies
- Maximise effect of disease-modifying therapy
AD disease progression

- Primary prevention
- Disease modification
- Palliation
- Pathology

Symptoms:
- 3 years
- MCI
- AD
Tests for Alzheimer’s

<table>
<thead>
<tr>
<th>Test purpose</th>
<th>Use in Clinical Management</th>
<th>Utility in Clinical Trial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prediction</td>
<td>risk of acquiring dementia</td>
<td>Enriching at risk populations c.f. APOE and MCI trials</td>
</tr>
<tr>
<td>Early diagnosis</td>
<td>dementia vs no dementia</td>
<td>Early intervention</td>
</tr>
<tr>
<td>Differential diagnosis</td>
<td>AD vs other dementia</td>
<td>Increased specificity</td>
</tr>
<tr>
<td>Evaluating therapy</td>
<td>surrogate marker</td>
<td>Monitoring efficacy</td>
</tr>
<tr>
<td>Predicting outcome</td>
<td>responders vs non-responders</td>
<td>Pharmacogenomics c.f. NICE and ACHEIs</td>
</tr>
</tbody>
</table>
AddNeuroMed

- EFPIA sponsored
- EU FP6 funded
- 44 participants
- Collaboration between pharma, SMEs, academia

Current methods of diagnosing AD

- **Clinical examination**
 - Based on detailed questioning of patient and carer(s)
 - Can reliably differentiate MCI from AD
 - Cannot readily predict MCI converters
 - Inherently difficult to precisely stage AD
 - Hard to score improvement from symptomatic treatment
Current methods of diagnosing AD

- **Brain imaging**
 - Can show structural changes – but not truly diagnostic
 - Newer functional methodologies in development e.g. beta-amyloid ligand function
 - Regular imaging may assist with staging and progression
 - Must be used in combination with clinical examination
Current methods of diagnosing AD

- **Cerebrospinal fluid**
 - Monitoring of brain-derived protein levels
 - Well established markers related to disease pathology – Aβ, tau, phospho-tau
 - Moderately sensitive and specific
 - Some markers may correlate with stage and/or progression
 - Poor leakage into blood
 - Of limited diagnostic potential
Current methods of diagnosing AD

- Cerebrospinal fluid

Current methods of diagnosing AD

- Where are we today?
 - No routine non-invasive methodology with sufficient sensitivity or specificity for diagnosis
 - No routine correlation to disease stage for accurate monitoring of progression
 - No disease modifying therapeutics approved
 - Benefit of symptomatic treatments difficult to measure accurately
 - Lack of early diagnostics limit clinical management of AD
 - Need to discover blood biomarkers of AD
Proteomic analysis of blood

- Three different proteomics approaches: 2-D Gel, SELDI, Isotopic mass labels (qPST)
- Cohort of 50 patients and 50 age/sex matched controls
- Over 30 candidate biomarkers identified
- Ten proteins seen by 2 or more methods prioritised for evaluation
- ELISA & Western blot assays for 6 markers already developed
The Plasma Proteome Challenge
The 2-DE Process (Gel based)

Sample → 2DE-gel → Image analysis → MS/Bioinformatics

Gel-free Technologies (PST®; qPST™; TMT®)

Sample → Labeling → HPLC/MS; HPLC/MS/MS → Bioinformatics
SELDI – Control vs AD
Proteome-based plasma biomarkers for Alzheimer’s disease

A. Hye,¹ S. Lynham,¹ M. Thambisetty,¹ M. Causevic,¹ J. Campbell,³ H. L. Byers,³ C. Hooper,¹ F. Rijsdijk,² S. J. Tabrizi,⁴ S. Banner,¹ C. E. Shaw,¹ C. Foy,¹ M. Poppe,¹ N. Archer,¹ G. Hamilton,¹ J. Powell,¹ R. G. Brown,¹ P. Sham,² M. Ward³ and S. Lovestone¹

¹King’s College London, MRC Centre for Neurodegeneration Research, ²King’s College London, MRC Social, Genetic and Developmental Psychiatry Centre, ³Proteome Sciences Plc, Institute of Psychiatry and ⁴University College London, Institute of Neurology, London, UK

Correspondence to: Simon Lovestone, PhD, King’s College London, MRC Centre for Neurodegeneration Research, Institute of Psychiatry, London SE5 8AF, UK
E-mail: s.lovestone@iop.kcl.ac.uk

Candidate blood biomarkers include:
- Complement Factor H
- Haptoglobin
- Alpha-2-microglobulin
- Clusterin
- Complement C3a
- Complement C4a
Evaluation of Candidate Biomarkers

Western blot
- 121 AD patients
- 205 non-demented controls
- 100 Motor Neuron disease (MND) patients
- 18 Multiple System Atrophy (MSA) patients
- 14 non-demented neurological patients
- 55 Huntington’s disease patients

Complement Factor H (CFH)
- CFH up-regulated in AD
- Western blot validation 121 AD vs 148 controls
- Significant 45% increase in AD (p<0.01)
- Significant correlation with MMSE score (p<0.05)
- Spot intensity correlates with GDS
- No elevation in other dementias
Biomarker assay performance

- Single marker assays do not have required specificity
- Better methods required
- Multiplex analysis will be necessary for complex diseases like AD
- Availability and quality of antibodies for ELISA-type validation is time limiting factor for development
Towards multiplexed assays

8 Protein MRM Array

- 72 individual transitions
- At least 2 peptides per protein
- Use of standards for quantitation

Instrumentation
1. Triple Quadrapole
2. Hybrid MS: QTRAP

Application
Wide range of analytes
Qualitative or Quantitative
Hyperphosphorylated PHF Tau is a classic AD pathology

Phospho-tau peptides seen in CSF but not yet in blood

Phosphosite specific MS analysis method developed and applied to PHF tau extracted from AD brains

In a first analysis 19 phosphorylation sites were mapped to the tau molecule

High sensitivity MS using MRM revealed 37 total sites - several previously unseen

Provides potential new markers in blood – if MS methodologies are sensitive enough
MS tau phosphorylation assays

Monitoring 41 unique p79 events via an MRM experiment

Relevant Sample:
- Recombinant protein
- Cell line
- Mouse models
- PHF Tau (Human)

Creation of panels:
- Choice of protease
- Site directed or Kinase directed
Conclusion

- Current AD diagnostics lack accuracy or are too problematic for routine use
- Proteomics strategy has identified candidate biomarkers of AD in blood, but….
- Single immunological assays lack adequate sensitivity and specificity
- Mass spectrometry offers improvements in sensitivity and quantitation capabilities without need for antibodies
- Need to develop and validate AD-Biomarkers in medium throughput multiplex assays
Conclusion

- New diagnostic paradigms based on multiplex detection of blood biomarkers will have a significant impact on clinical management of AD

- Biomarker support for drug development will improve drug efficacy and safety whilst reducing size, length and cost of clinical trials

- Proteomics studies of AD are providing new insights into disease pathology providing new targets and biomarkers
Acknowledgements

Proteome Sciences plc
Malcolm Ward
Abdul Hye
Helen Byers
James Campbell
Annette Dalrymple
Vaksha Patel
Josef Schwarz
Stefan Kienle
Richard Joubert
Petra Prefot
Karsten Kuhn
Thorsten Prinz
Jürgen Schäfer
Christian Baumann
Christian Hamon

MRC Centre for Neurodegeneration Research
Simon Lovestone
Brian Anderton
Madhav Thambisetty
Diane Hanger
Hugh Reynolds
Richie Williamson
Michelle Utton
Inma Cuchillo
Steve Lynham
Pat Sham