Computer mice and screens for older people
Computer mice and screens for older people

Faustina Hwang
School of Systems Engineering
University of Reading

f.hwang@reading.ac.uk
Volunteer Feedback from Silver Surfers’ Day 2008

On common themes or issues:

“Some people had difficulty using the mouse.”

“…mouse control was a major problem at first”

“I noticed that the biggest problem for the surfers was using the mouse.”

“For the majority of them, the mouse was particularly difficult to get used to…”
Research Literature

Compared with younger people, older adults have greater difficulties using a mouse:
- take longer to make movements
- have more difficulties getting the cursor onto a target and keeping it steady
- double-clicking found to be one of the most difficult tasks
Improving “point and click”: investigating expanding targets

ISO 9241, Ergonomic requirements for office work with visual display terminals (VDTs) — part 9, requirements for non-keyboard input devices.
“regular” and expanding, range of target sizes, range of distances

10 older (average 72 years)

“regular” and expanding, range of target sizes, range of distances

10 younger (average 24 years)
Key Findings

For older adults, expanding targets

- provided a 13% reduction in time,
- provided a 52% reduction in errors
- were intuitive.
Further questions

• How should these methods be implemented for multiple targets?

• How well will these methods work for multiple targets?
Studying Double-Clicks

Aim: to better understand the nature of the difficulties that older adults have with double-clicking.

Is it mostly:
Studying Double-Clicks

Aim: to better understand the nature of the difficulties that older adults have with double-clicking.

Is it mostly:

- getting the cursor onto a target and keeping it steady? *movement error*
- being able to click twice within the allotted time interval? *timing error*
192 double-clicks, 3 sessions, different days

12 older (average 64 years)

12 younger (average 21 years)
Findings (1st session)

• for both age groups, movement accounted for most of the errors
• older adults were more prone to timing errors than younger adults

• Implications:
 – priority lies with addressing movement
 – techniques to address timing issues will be more beneficial for older adults
Alternative (Better?) Interactions
Acknowledgements

• EPSRC/BBSRC SPARC
• School of Systems Engineering
• Staff and volunteers at Age Concern, Berkshire
• Study participants
• Researchers
 – Nitin Williams, Helen Batson, Nic Hollinworth