Validating Design Knowledge in the Home
A Successful Case Study of Dementia Care

John Long and Sacha Brostoff

UCL Interaction Centre
University College London
Background

- Technology now in the home as well as at work
- Implications for
 - Healthcare
 - Technology
 - Cognitive Ergonomics
Trends and Requirements

- Healthcare
 - Less institutional
 - More community-based and so domestic
 - Mental as well as physical

- Requirement
 - Extend care design to the home
 - Develop design of mental care
 - Express quality of life as some kind of performance
Trends and Requirements

- **Technology**
 - Sensors for monitoring
 - Technology includes all domestic artefacts
 - ‘Design for all’ (including dementias)

- **Requirement**
 - Integrate technology and artefacts in (re-)design
 - Design technology for care performance
 - Quality of life
 - Workload (usability)
Trends and Requirements

- Cognitive Ergonomics
 - Greater emphasis on mental than physical tasks
 - Transfer design knowledge from work to home

- Requirement
 - Extend design knowledge
 - Validate design knowledge
Case-study

▪ Aims
 • Re-design technology in the home
 • Improve dementia care and quality of life
 • Validate structured design knowledge - MUSE
Design Method

Application

- Validation of design knowledge (Long, 1996)
 - Conceptualisation
 - Operationalisation
 - Test
 - Generalisation

- Here operationalisation and test
 - 1. Design completeness
 - 2. Design consistency
 - 3. Application of domain knowledge
 - 4. Application of human factors knowledge
 - 5. Integration of desirable existing features
 - 6. Design rationale for 3, 4, and 5
 - 7. All features embodied in MUSE products
Design Method

- **MUSE(C) Containers (Colbert 1997)**
 - **Use**
 - Advanced technology projects
 - Support demonstrators
 - Often no specific user requirements
 - **Features**
 - MUSE design products (containers)
 - Fill/complete as possible
 - No MUSE procedures or notations
 - For use by human factors specialists
Case-study

▪ Design scenario
 • Re-design
 • ‘Advanced development project’
 • Aim: to demonstrate ways of making technologies for dementia care in the home more effective
 • Initial phase, rapid demonstration
 • Participants
 ❖ ‘A’, a caree, suffering from fronto-temporal dementia (poor memory and reasoning)
 ❖ ‘B’, A’s principal carer and husband
 ❖ ‘C’, a human factors trained designer, but with no MUSE application experience
- **Phase 1 Information Elicitation and Analysis**
 - **Products/containers:**
 - task description; rationale; generalised task model for existing and target systems
 - **Example:**
 - task description of existing hifi system use
Task Description

- **Comments**
 - A is supported by B in hifi use (CD, tape, radio, amplifier)
 - B operates CD player well
 - B commits amplifier errors
 - Fails to switch on amplifier
 - Fails to select CD mode

- **Application features**
 1. Design completeness (music selection and hifi preparation, as well as CD use)
 3. Domain knowledge (amplifier hifi relations)
 4. Human factors knowledge (mode errors reflect memory failure)
MUSE(C)

- Phase 2 Design Synthesis
 - Products/containers:
 - statement of user needs; domain of design discourse; domain actions and objects; composite task model; system task model; and user task model
 - Example:
 - composite task model of re-designed CD player use
Composite Task Model

- **Comments**
 - Device-independent description
 - Combines desirable existing and redesign features
 - Distinguishes
 - on-line tasks (technology supported - ‘play music’)
 - from off-line tasks (‘select music’)

- **Application features**
 2. Design consistency
 (between task description, shown earlier, and composite task model)
 5. Integration of desirable existing features
 (‘select music; ‘supply CD player with music’)
MUSE(C)

- Phase 3 Design Specification
 - Products/containers:
 - interaction task model; interface model; pictorial screen lay-out; dialogue and error message table; dialogue and inter-task screen actuation description; and dictionary of screen objects
 - Example:
 - interaction task model of re-designed CD player use

<table>
<thead>
<tr>
<th>Interaction No.</th>
<th>User Action</th>
<th>Device state</th>
<th>Device Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Press 'receptacle open' button</td>
<td>Receptacle closed</td>
<td>Open receptacle</td>
</tr>
<tr>
<td>2</td>
<td>Ditto</td>
<td>Receptacle open</td>
<td>Display message that receptacle is already open</td>
</tr>
<tr>
<td>3</td>
<td>Introduce media</td>
<td>Receptacle open, no media</td>
<td>Stage 1, do nothing Stage 2, close receptacle, begin playing media</td>
</tr>
<tr>
<td>4</td>
<td>Ditto</td>
<td>Receptacle open, media already present</td>
<td>Stage 1, display feedback Stage 2, display feedback</td>
</tr>
<tr>
<td>5</td>
<td>[Stage 1 shut receptacle]</td>
<td>Receptacle open, media present</td>
<td>Begin playing media, display feedback</td>
</tr>
<tr>
<td>6</td>
<td>Ditto</td>
<td>Receptacle open, media absent</td>
<td>Display a warning</td>
</tr>
<tr>
<td>7</td>
<td>Listens to music</td>
<td>Music finishes</td>
<td>Stage 1, display feedback Stage 2, display feedback, open media receptacle</td>
</tr>
</tbody>
</table>
Interaction Task Model

- **Comments**
 - Device-level description of user behaviours
 - Links to other low level design products (error messages)

- **Application features**
 - 2. Design consistency (via interaction numbers - composite task model - ‘supply CD player with music’)
 - 3. Domain and 4. human factors knowledge (‘switch on amplifier’ and ‘select CD mode’, performed by B)
Case-study

- **Summary**
 - 9 domestic sub-systems re-designed (including: hifi; TV; VCR/playstation; tapestry; piano; etc.)
 - 50 design products
 - 18 different products/containers

- **Conclusions**
 - Re-design generally demonstrated more effective dementia care technologies
 - Re-design suggested further developments
Evaluation

For each re-designed sub-system:
• B rated (1-10) A’s quality of life - TQ(A) and A’s workload - W(A)
• before and after re-design

Results

<table>
<thead>
<tr>
<th></th>
<th>TQ(A)</th>
<th>W(A)</th>
<th>Freq. of Use</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>Before</td>
<td>1</td>
<td>9</td>
<td>O</td>
<td>CD player not easily accessible</td>
</tr>
<tr>
<td>After</td>
<td>3</td>
<td>7</td>
<td>Low</td>
<td></td>
</tr>
</tbody>
</table>

Conclusions
• TQ(A) increased (but still low)
• W(A) decreased (but still high)
• frequency of use increased (but still low)
• poor CD player accessibility a possible cause
Validation of MUSE(C)

- **MUSE(C) operationalised and tested**
 - Domestic technologies demonstrated for dementia care
 - Re-design generally more effective
- **MUSE(C) shortcomings**
 - C experienced difficulties in its application (30)
 - Identified design problems
 - Suggested design solutions

<table>
<thead>
<tr>
<th>MUSE Container</th>
<th>Diagnosis</th>
<th>Prescription</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTM(x)</td>
<td>There was difficulty in operationalising this container. The CTM's definition as describing elements of the design is slightly less general terms than a General Task Model is ambiguous and gave little guidance.</td>
<td>Amend description of CTM, gave concrete example of CTM and General Task Models, illustrating the difference in generality between them.</td>
</tr>
<tr>
<td>ITM(y)</td>
<td>It is difficult to distinguish between ITM and Interface Model from their definitions</td>
<td>Expanded definition of ITM, relate it to the 3 levels of interface design: Input/output, Dialogue, and Task levels.</td>
</tr>
<tr>
<td>ITM(y)</td>
<td>Where do changes in auditory display go – the auditory channel is not part of the definition of any MUSE containers?</td>
<td>Expand definition of IM, clarify auditory display changes as belonging to Dialogue and Error Message Table or Interface Model. Define for haptic display / feedback as well.</td>
</tr>
</tbody>
</table>

- **Conclusion**
 - Validation only partial
 - MUSE(C) can now be revised to produce a more effective version
Conclusion

- **Case-study is successful**
 - new domain - dementia care in the home
 - partial validation of MUSE(C)
 - revised MUSE(C) now possible

- **Importance for Cognitive Ergonomics**
 - an example of building on earlier - and others’ - work