Targeting Antioxidants and Redox Probes to Mitochondria

Mike Murphy
MRC-Dunn Human Nutrition Unit, Cambridge
Mitochondria and Oxidative Stress

Overview

First, the generally recognised consensus on mitochondrial ROS production and the critical questions to be addressed when considering Mitochondria and Oxidative Stress
Mitochondria and Oxidative Stress

Overview

First, a generally recognised consensus on mitochondrial ROS production and the critical questions to be addressed when considering Mitochondria and Oxidative Stress.
Mitochondria and Oxidative Stress

Overview

First, a *generally recognised* consensus on mitochondrial ROS production and the critical questions to be addressed when considering Mitochondria and Oxidative Stress

“*generally recognised*” = “*I think, but I haven’t bothered to look up the references*”
Critical questions

• ROS
 – Which?
 – Where?
 – Effects?
Critical questions

• Antioxidants
 – Which ROS?
 – Effective?
 – Other effects?
 – Measurable endpoints in vivo/patients?
Mitochondrial ROS metabolism

Proton cycling coupled to ATP synthesis

Futile/uncoupled proton cycling

Mitochondrial inner membrane

Intermembrane space

Mitochondrial ROS metabolism

Protein catalysed leak

H⁺ non-protein catalysed leak

Superoxide

Aconitase damage

Oxidative damage

MnSOD

PRX III

GPX

GR

GSSG

NADPH

NADH

H₂O₂

Fe²⁺

OH⁻

ONOO⁻
Uptake of MitoQ by Mitochondria

```
<table>
<thead>
<tr>
<th>Time (min)</th>
<th>MitoQ uptake (nmol/mg protein)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>2</td>
</tr>
</tbody>
</table>
```

+FCPP

JBC (2001) 276 4588-4596
Reduction of MitoQ by the Respiratory Chain

Absorbance = 0.1

Wavelength (nm)

Time
Prevention of Lipid Peroxidation by Reduced MitoQ

![Graph showing MDA (nmol/mg protein) levels with varying concentrations of MitoQ and Mitoquinone. The x-axis represents [MitoQ] (µM) and [Mitoquinone] (µM), while the y-axis represents MDA (nmol/mg protein). The graph shows a decrease in MDA levels with increasing concentrations of MitoQ.]
Turnover of MitoQ by mitochondria
MitoQ variants

Partition coefficient

<table>
<thead>
<tr>
<th>Molecule</th>
<th>Partition Coefficient</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPMP</td>
<td>0.35 ± 0.02</td>
</tr>
<tr>
<td>MitoQ<sub>3</sub></td>
<td>2.8 ± 0.3</td>
</tr>
<tr>
<td>MitoQ<sub>5</sub></td>
<td>13.9 ± 1.1</td>
</tr>
<tr>
<td>MitoQ<sub>10</sub></td>
<td>2,760 ± 220</td>
</tr>
<tr>
<td>MitoQ<sub>15</sub></td>
<td>20,000 ± 4,900</td>
</tr>
</tbody>
</table>

Phospholipid

FEBS Letts (2004) 571 9-16
Coenzyme Q
Distribution of MitoQ
Complex III with MitoQ
Could steric hindrance explain the low reactivity of \(\text{MitoQ}_{10} \) with Complex III?

JBC (2007) in press
Steric inhibition is not involved in Complex III
Complex II with MitoQ$_{10}$, MitoQ$_3$ and MitoQ$_5$
Mitochondrial Membranes

SV Constant (% of max)

Pyrene (CH₂ groups)

MitoQ₁₀
DecylTPP
Idebenone

JBC (2007) in press
Distribution of MitoQ
Potency of MitoQ in a Friedreich’s Ataxia model

Concentration [nM]

MitoQ
MitoQ + FCCP
Decylubiquinone
Idebenone

Distribution of TPMP in Mice

TPMP (nmol/g wet weight)

Days of ingestion

 PNAS (2003) 100, 5407-5412
MitoQ decreases tissue damage during I/R injury
Protection of mitochondrial function

NAD^+ Linked respiration

$\text{Respiratory Control Index}$

pre-ischaemia control TPMP Q_{3}OH mQ_{10}

post-ischaemia $***$ $**$

FASEB J (2005) 19 1088-1095
Nitroglycerin tolerance due to damage to mitochondria

In vivo treatment
Rat Aorta

% of initial tension

Control
MitoQ
Nitroglycerin
Nitroglycerin + MitoQ

Nitroglycerin (log M)

Pharmaceutical development of MitoQ

• Change counter-ion, complex to β-cyclodextrin
• Toxicity
 – No Observable Effect Level (NOEL) 2.4 mg/kg
 – No Observable Adverse Effect Level (NOAEL) 10.6 mg/kg
• Bioavailability ~ 10 %
• Minimal excretion in urine of unmodified MitoQ.
• Major metabolites in urine - glucuronides on Q ring
• 10 mg MitoQ tablets
Plasma levels of MitoQ in humans following oral administration

MitoQ (1 mg/kg oral)
$C_{\text{max}} = 33.15 \text{ ng/ml}$
$T_{\text{max}} = 1 \text{ hour}$
Mean ± SD, $N = 6$
Human Phase II trials with MitoQ
(Antipodean Pharmaceuticals Inc
www.antipodeanpharma.com)

• **Parkinson’s Disease “Protect Trial”**
 – A double-blind, prospective, randomized comparison of 2 doses of MitoQ (40 and 80 mg) and placebo for the treatment of patients with Parkinson’s Disease
 – Primary outcome: Unified Parkinson's Disease Rating Scale (UPDRS) score at the final study visit compared to baseline
 – Multi centre (New Zealand and Australia), fully recruited (128 patients), outcome due March 2008.

• **Hepatitis C**
 – Phase II clinical trial of MitoQ to investigate the drug’s efficacy to reduce liver damage in patients with raised liver enzymes associated with the Hepatitis C virus (HCV).
 – Auckland, NZ. Started recruiting February 2007